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FOREWORD

This is a technical report of a study conducted by the Electrical
Engineering Department of Auburn University under the auspices of the
Auburn Research Foundation toward the fulfillment of the requirements

prescribed in NASA Contract NAS8-20163.

ii



ABSTRACT

In this work, three techniques for the synthesis of a network
with a given transfer function are described. The synthesis techniques,
which are based on approximation methods using sampled inputs, are
listed and described as Methods I,II, and III. All three techniques
are derived using the convolution integral, with each method origi-
nating from a different approximation of the convolution integral.

The purpose of this study is to determine the feasibility and
the desirability of the digital implementation of a network with a
given transfer function. The approach taken is entirely general
and allows the techniques developed to be used in the realization of
any transfer function. However, of the three techniques presented,
the more advantageous technique will depend upon the specific problem
under consideration.

In synthesizing a particular transfer function, the required amount
of circuitry for the implementation of the network will determine the
technique used. As will be noted, all three techniques require a

varying amount of logic circuitry for the implementation of a specific

network.
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I, INTRODUCTION

There is a great deal of information available in the literature
on the methods of realizing transfer functions. Network synthesis, a
growing and already extremely large field, makes available many
approaches and techniques for synthesizing a network with a tranfer
function G(s). The synthesis of the network may be carried out in
either the frequency or the time domain, depending upon whether the
desired characteristics and available information are in the frequency
domain or in the time domain. Synthesis in the frequency domain may
start in the form of a required root-locus plot, or a graph of the
required frequency response. Synthesis in the time domain may start
with a graph of the desired transient response. However, these may be
labeled as graphical or semi-graphical techniques; but, in some
instances, an analytic approach might be preferred, in which case,
analytic methods, such as the use of z transform theory or difference
equations, are available.

In the techniques mentioned above it is assumed that the networks
to be synthesized are analog in nature. As detailed in the following

sections, an investigation was made of the use of digital networks

in synthesizing a network with transfer functions G(s). The introduction

to Chapter II gives a summary and discussion of analog and digital tech-

niques that are presently available for network synthesis.




The remainder of Chapter II is devoted to the derivation and
discussion of three new synthesis techniques. The techniques, referred
to as Methods I, II, and III, are based on different approximations
of the convolution integral. In deriving Method I, the input is
assumed to be the sum of a number of step functions that closely
approximate the actual input. In order to realize this assumption, the
input is sampled at a frequency much higher than the highest frequency
component of the input. In fact, all three techniques are based upon
sampling the input and making certain valid assumptions. Method II
employs the network response to a unit impulse response, while
Method III is actually a rearrangement of the equations derived in
Method I. Also included in Chapter II are illustrative examples to
indicate the validity of the different methods.

Chapter III deals with the actual implementation of the logical

networks, together with a discussion of the relative merits and the

presented in block diagram form.



II. SOME METHODS FOR THE SYNTHESIS
OF TRANSFER FUNCTIONS

A. Introduction

Some of the methods presently available for the realization of
transfer functions are presented in the Imtroduction. The results
of these methods range fromwry good approximations to exact results,
and are accomplished using either active, passive, or digital networks.

The network might be an RLC passive network which has the desired
characteristics. On the other hand, active networks may be designed
that have the characteristics of RLC networks, but without the use of
an inductor. This was brought out in an investigation of compensating
networks for an inertial guidance platform,1 after which an operational
amplifier was chosen as the compensating device. One of the advantages
of this choice is that the entire compensating network can be micro-
miniaturized.

Quite often compensation is accomplished using a digital system,
called a digital controller, which is designed to perform certain
linear operations on the input samples before delivering the output
samples.2 The digital controller may contain a passive network pre-
ceded and followed by synchronous samplers. The digital controller
may also be a special purpose digital computer or a general purpose

computer programmed to carry out the necessary operation.



Also, active linear digital controllers may be designed so that they
accept a number sequence and process it to deliver a desired number
sequence at their output.

Another method uses pulses to approximate the response of an
analog network to a unit step input.3 Also, another powerful method
used in synthesizing transfer functions is based on a power series
approximation of the system impulse response.4 The following sections
of this chapter deal with the methods I, II, and III as mentioned in
Chapter I.

B. Method I - Approximation
of Input with Step Functions

Given the transfer function G(s), it is desired to find the
output e,y(t) of the system for any input ey (t).
Ep(s) = G(s) Eq(s) = [G(s)/s][s Eq(s)] (1)

Since multiplication in the s domain corresponds to convolution in the
time domain, the time response e2(t) may be found by the convolution

of the inverse Laplace transforms of G(s)/s and s El(s)é
- -1
el re(s)/s] = 277 [A(®)] = A(R) (2)

where A(t) is the response to a unit-step input and is called the

indicial response.



El(l)

Fig.

5
G(S) Ez(s)
— r---

l--Network with transfer function to be realized.



¢! [sE;(s)] = E%t) + e1(0) &(t) (3)

where 5(t) is an impulse function occurring at t = 0. Convoluting

the results of equations (2) and (3) gives

ey (t) = [d—el—(i)- + e (0) 6(t)J *A(t)
. dt
t
= rdei (1)
Jf {'__—___ + e,(0) S(T)} A(t - T)dr,
S . dTt
and
t
e, (t) = e(0) A() + [ 981 (D aqe - myar . @)

- dT
o]

Equation (4) may be used to find the response e2(t) of a system
for any input el(t) provided thé indicial response of the system is
known.

Suppose el(t) is piecewise continuous; i.e., it contains dis-
continuities. Equation (4) may still be used, but the effects of the
discontinuities must be taken into account when finding the response
of the system. Any discontinuity, either increasing or decreasing
the value of ej(t), may be considered a step function applied at the
time of the discontinuity t =t;. The response of the system to

the step function is A(t - tj) multiplied by an appropriate constant.



If the input is known as a function of time, equation (4) may
be used to find the time response of the system. However, in general,
the input is not known as a function of time, but is a measureable
quantity. From this it is desired to build a logical network which
will accept a general input and produce the same output as a network
with transfer function G(s).

Since the input is a measureable quantity, let e;(t) be sampled
at a frequency which is much higher than the highest frequency com-
ponent of the input. Let the sampling frequency be f and the time
between samples be T. The input may be approximated by letting ej(t)
assume a constant value between sampling instants. This is illustrated
in Figure 2, where it can be seen that, the higher the sampling fre-
quency, the more accurate the approximation.

The integral in equation (4) may now be broken into parts and

the response written as

T .
e2(t) = e,(0)A(t) + L/1 EflaéZl A(t - T)dT + {el(T)-el(O)}A(t-T)
(o]
2T
"‘f dilg(;-)- At - 1) + [el(ZT) - el(T)] A(t - 2T) + . .
T
nT

J/\ deéT(T) A(t - 7)dt +[ ey (nT)-e [(n-l)T]J A(t-nT).
(n-1)T



8
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Fig. 2--Approximation of input with step functionms.




However, since the input is assumed constant between sampling in-
stants, the derivative inside the integrals is equal to zero and
eo (t) becomes

r 7

21(T) - el(O)J A(t-T) +

ep(t) = eq(0)A(t) +

+ {el(ZT)-el(T)] A(t-2T) (5)

I
-)

+ ... (el(nT)-el[(n-l)T]l A(t-nT),

which results in the following closed form,

n=

e2(t) = }: {el(nT)-el[(n-l)T]J A(t-nT) (6)

n=0

Kth

where K denotes the sample of the input. If the value of the

response is needed at time t = tj, where KT < t] < (K + 1)T the summa-
ion is carried through n = K.

Equation (6) can also be derived by looking at Figure 2, which
shows an approximation of ej(t) by considering the input to be the sum
of a number of step functions occurring T seconds apart. The response

of the system to a step function u(t) is A(t) and the response to a

delayed step function u(t-nT) is A(t-nT). Therefore,
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e1(0)A(t) + {el(T) - el(O)J At -T) +. ..

=) (t) =
+ [el(nT) - el[(n-l)Tﬂ A(t-nT),
and
n=K
e2(t) = ;;‘ (el(nT) - el[(n-l)T]] A(t-nT),
n=0 B

which is the same as equation (6).

It should be noted that even though the input is sampled and
is known at the sampling instant only, the output may be found at all
instants of time using equation (6). Since the output is to be produced
using logical networks, the output is needed at only the sampling
instants and may be written

n=K
ey (KT) = Z Irel(nT) - el[(n;l)T]J A[ (K-n)T] (7)

n=0

where K denotes the sample and KT the time at which the response is
needed. Let the term ''characteristic constant' denote the specific values

of A[(K-n)T] when evaluated properly using the appropriate K and n.

C. Method II - Use of Network Impulse Response

Again, consider the network with input, transfer function and

output Ej(s), G(s) and E,(s) respectively:
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E2(s) = El(s) G(s)

-1

£ [6(s)] = sg(t)

-1

& [El(s)] = el(t).
Convoluting g(t) and el(t) gives

t
ey (t) = ep(t)*g(t) = fel('r) g(t-T)dr )

o]

where g(t) is the network response to a unit impulse function.
Equation (8) allows the response ez(t) to be seen as the area
under the curve which results when the two curves el(T) and g(t-T)
are multiplied together. Using this property of the convolution
integral, assume that the sampling frequency is such that the input
may be considered constant between sampling instants. Equation (8)

may then be broken into parts:

T , 2T
ez(t) = el(O)é/n g(t-t)dT + el(T)d/‘ g(t-T)dt + .
T

(n+1)T ©)
.+ el(nT)JF g(t-T)dT, and
nT
n=[t/T] C(nt+1)T
e (t) =? e, (nT) f g (t-1)dr (10)
n=0 nT

where [t/T] denotes the greatest integer of t/T.
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The response at the sampling instants is

n=K (a+1)T
e2(KT) = } el(nT) Jfg(KT - T)drT. (11)
n=0 nT

Thus, upon selection of a particular transfer function G(s),
g(t) may be computed and inserted into equation (11) to find the

response of the system to any input e;(t).

D. Method III - A Reinvestigation of Method I

If Method I is investigated further, a new and perhaps more
advantageous approach can be made available. In deriving Method I,
the input is approximated by a number of step functions with the output
e2(t) being equal to the sum of the responses to these step functions.

The response may be written as before in equation (5):

ep(t) = e1(0) Alt

~’
+.
(]
[aall¥
~
+
~r
|
[
-
~~
(=]
~

+ [el(ZT)-el(T)J A(t-2T) + . . . + [el(nT)-el[(n—l)T] A(t-nT).

Now, suppose the response is needed only at the sampling instants; i.e.,

at t = nT; then

e, (nT) = e;(0) A(nT) +-{e1(T) - el(O)J A{(n-1)T] + (12)

[el(ZT) - el(T)J A[(n-2)T] + ...+{e1(nT)-e1[(n-l)T]JA(O).
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After multiplying term by term and regrouping the resulting terms,

e2(nT) may be written as

ez(nT) = el(O)[A(nT) - A[(n-l)T]]
(13)
+ el(T)[A[(n-l)T] - A[(n-2)T]]+ I el(nT) A(0),
and
n=K
ez(KT) = zg:el(nT*jA[(K-n)T] - A[(K-n-l)T]]. (14)
n=0 )

This can be seen to have a definite advantage over Methods I
and II insofar as implementation is concerned. However, it is
important to note that this result can be obtained through the proper
integration of the integral representation in Method II.

Thus, three different approaches in approximating the network
response to a general input have yielded a common result, since the
response found using Method III is equivalent to that of Method I

and Method II.

E. Illustrative Examples

In order to illustrate the validity of the three techniques,
suppose a network with transfer function is chosen as shown in Figure 3.
Method I is first used to find the response e2(KT) for several
example inputs; this should be sufficient to illustrate the validity of

all three techniques since the responsés at the sampling instants

are equivalent.
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E1(°) G(s) =

_2(s+1)(842)
(8+43) (s+4) (8+5) Ez(s)

Fig. 3--Example system.
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To find the indicial or step response let el(t) = u(t).

Eq(s) = 1/s
] _ = _2(s+D) (s+2)
EZ(S) A(s) El(s) G(s) s (s+3) (s+4) (s+5)
_ -1 2(s+1) (s+2) |
A(t) [s(s+3)(s+4) (s+5) |
=%5--%e -3t+3e"4t "";—e-St

According to equation (6),

n=K
e2(KT) = ;z [el(nT) - el[(n-l)T]J A[ (K-n)T]. (6)
n=0

The response at time t = KT may be found by summing the difference in
consecutive samples multiplied by the appropriate characteristic

constants. Suppose the example inputs are chosen as follows:

u(t)

(a) step input - ej(t)

(b) ramp input - ej(t) =t

(c) parabolic input - el(t) = ¢2

(d) sinusoidal input - ej(t) =2 sin t + 3 sin 2t

For the step input the difference in consecutive samples after

the '"n=0" sample is equal to zero, and ep(KT) = el(O) A[ (K-n)T].
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Thﬁs the response found using Method I is exact at the sampling
instants as shown in Figure 4,

Figure 5 shows the response of the network when the input is a ramp
function, while Figure 6 gives the response to a parabolic input. The
sinusoidal input was chosen because of its generality as an input
function, and because its wave shape has both positive and negative
slopes; the latter characteristic permits a better test for the
approximations used in deriving the equations. The response to a
sinusoidal input is shown in Figure 7.

These responses were found using Method I, but as stated before,
Methods I, II and IIT give equivalent results when the response is
found at the sampling instants only.

The sampling interval for the examples in Figures 4; 5, 6 and 7 is
T = 0.1 seconds. 1In order to illustrate the effect of the sampling
frequency on the accuracy of the response, let the sampling interval be
halved, T = 0.05 seconds, and compute the response to the sinusoidal
input. These results are shown in Figure 8. A comparison of the results
in Figures 7 and 8 will readily show that the response found by using
the faster sampling frequency is the more accurate. Hence, it should
be obvious that a sampling frequency could be chosen that would permit
the response to be computed as accurately as desired. It is this
characteristic of the synthesis techniques which increases their

adaptability to the digital computer.
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III. TMPLEMENTATION USING METHODS I, II, AND III

A, Introduction

A transfer function G(s) may be realized by the implementation of
one of the derived network equations. It is néw important to discuss
the actual implementation of the network response equations. First,
there is the classical approach, wherein the logical network is com-
prised of an analog-to-digital converter, combinational circuitry
(including shift registers for internal information storage), and a
digital-to-analog converter.é’%or a second approach, the combinational
circuitry is replaced by arithmetic units, shift registers, counters
and gating circuitry. This approach offers possibilitieé for a reduction
in the complexity of the logical network as compared with the classical
approach. It can be seen that equation (14), which is the basic
equation of Method III, is the most practical of the network equatiohs
to implement. This will be discussed further in a later section
devoted to the evaluation of each type of implementation and its
possibilities for extension.

B. Method 1

For convenience, rewrite equation (7):
n=K

ey (KT) = y [e1<n:r>-e1[<n-1>T]J Al (K-n)T]. (7)

n:

22
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It can be seen that the logical network necessary to implement this
equation must contain circuitry for addition, subtraction and
multiplication. This network is given in block diagram form in Figure
9.

A list of the logic function definitions is given in the

following table:

h

Wis Wy, Wi input at the nt sampling instant

X5 X, X input at the (n—l)th sampling instant

2° 3

ith difference in consecutive samples

h

output of it multiplier network

Vils Vi2» Vi3
Zys zz, z3, z4 output of summing network
Once a transfer function is specified, A(t) can be found, and the
values A[ (k-n)T] can be computed and incorporated directly into the
network as constant multipliers for the appropriate differences in the
consecutive samples that are stqred in shift register elements s, Sq1»
. . . , etc. The logical subtractor, multiplier and adder networks
are simply combinational networks that perform the indicated operatioms.
From the circuit in Figure 9, it is evident that the required
number of shift register elements and logical multipliers is determined
by the sampling period T and the maximum length of time for which a
response might be needed. This results from equation (7), requiring

that each difference in consecutive samples be stored and multiplied

at each sampling instant by a different characteristic constant.



*I poyldy 8ursn uorjejuswajdur yo weilerp }oolg--¢ ‘S14

, 1
EN eig ()72
| a/v e
v [l o N\
o, %% T4 ﬁ q _mB in|In
Py Dy pu 2ig T 1 B!
i | v
. _ !
~ «— “ \
Y72 r
— €x fox [T
(1% &— v/a| sz . A—ﬁ_v#xk I
%1 aeppy s
Jln 1eo1807 1330B13qNg
2 W&NQ 1¢4 1e51807
Hm
%mm.%mwmﬁﬂwm
¢
P 17
[A VS
114




25

Therefore, for this type of implementation to be practical, A(t), the
step response of the system with transfer function G(s), must be a
decaying exponential response with a time constant of the order of the
sampling period. This allows the logical network to be built with a
finite and practical number of shift registers and logical multipliers.
Suppose there are four required multiplier networks in the realization
of a specific transfer function, and that the output of each is
represented by three bits of digital information. 1In such a case,
there are twelve inputs to the logical adder network, and, as will be
seen later, this is not a small logical network. Therefore, it is
desirable to devise methods other than combinational circuitry to serve
as an adder network.

Equation (7), which yields the response at the sampling instants,
and equation (6), which yields the continuous response, may also be
implemented with a digital computer. This can be especially useful
in time-sharing systems that use on-line digital computers. Equations
(6) and (7) have been programmed on a digital computer, and both have

yielded highly accurate results.

C. Method II and Method III

As stated earlier, after proper integration of the integral
representation in equation (14), the results, and, therefore, the

)
implementation, are identical in Methods II and III. The basic net-

work equation of Method III is equation (14):
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=K .
e2(KT) = 7 e, (nT) [A[(K—n)T] - A[(K-n-l)T]:' (14)
n=0

The logical network used to implement equation (14) is shown in block
diagram form in Figure 10. Equation (14) does not require the difference
in consecutive samples, but does require the difference in consecutive
time values of the characteristic response A(tj. These characteristic
constants may be computed and incorporated directly into the logical
network as constant multipliers for the appropriate input samples. It
should be noted that this type of implementation can be used to approx-
imate the response of a system at the sampling instants by terminating
the series obtained from equation (14) after a certain number of input
samples. The step response of a general, stable system approaches a
constant value after a finite length of time, and, therefore, the
difference in consecutive time values of this characteristic response

approaches zero. This allows the termination of the series in equation

(14), which corresponds in the logical network to omitting those multiplier

circuits whose characteristic constant inputs are negligible and will
produce a negligible output as far as the summing network is concerned.
There follows an example of a network whose characteristic constants
are negligible after four consecutive time constants; i.e., A(4T) -
A(3T), A(ST) - A(4T), . . . etc., are approximately equal to zero.

After computing the values for A[ (¥kn)T] - A[ (K-n-1)T] it is
necessary to select the number of bits required to represent Al (K-n)T] -

A[ (K-n-1)T] and el(nT) correctly. In order to keep the logical network
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as simple as possible while, at the same time, representing the functions
accurately, two bit precision was chosen for the input and multiplier
networks; the output of the summing network is represented with four

bits. A list of the logic function definitions is given in the table

below:
. .th . .
Y510 Yio sampled input to the i~ shift register
X0 %o, Al (K-n)T] - A[ (K-n-1)T] input to the it}
i
multiplier network
Z51> 242 output of the ith multiplier network
Z1s Zos 235 Z4 output of the summing network
MULTIPLIER NETWORK OUTPUT FUNCTIONS
Ai ei(nT) £ = Aiei(nT)
*11 *12 Y11 Y12 “11 "12
1 1 0 O 0 0
1 1 0 i 0 1
1 1 1 0 0 1
1 1 1 1 1 0
211 T *11 *12 Y11 Y12

] - L}
12 = %11 %12 Y11 Y12 T i *r2 Y11 Y12

z z
*31%92 V21722 21722
1 o 0 0 0 o0
1 0 0o 1 0o o0
1 0 1 0 0o 1
1 0 1 1 0o 1
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z21 =0
- 1}
Zog T X% Ny
%31%32 Y31732 %31%32
0 1 0 0 0 0
0o 1 0o 1 0 0
0 1 1 o0 0 0
0 1 1 1 0 1
231 =0
z = 'x
32~ *31 ¥35Y31732
H 1 = = = =
owever since X1 x31, X, 0 = %39 y41 y31, and Yuo = Y327
241 = %31 = O
and z =2

= 1
42 = %32 T %31 3073179,

The minimized logic functions for the output of the summing network

are given below.

ACEG

N
H

AEG' + ACG' + AC'G + CE'G + A'E'G + CEGH + BDE

2y
+ BEH + DEH + BDG + BFG + DFG + BCF + AC'FH

+ CFH + BDFH + ADF + B'DF + ADH

—
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z, = ACEG' + AC'EG + A'CEG + ACE'G + BDE'G'F' + BCEH
+ ADEH + A'B'C'D'EG' + A'B'DEG'H' + BC'D'E'G'H'
+ BDEG + A'B'C'E'F'G + BC'D'E'GF' + AC'E'F'G'H’
+ A'CE'F'G'H' + A'DE'F'H + BC'D'E'H + ACFH + A'B'C'FH
+ A'B'CE'F'H + AC'DE'F'H + A'DFG'H' + ADFG + A'B'C'D'FG

+ BCFG + AC'D'FG'H' + A'BC'FG'H + A'B'CFG'H

z, = BDFH' + B'D'FH' + BD'FH + BD'FH + B'DFH + BDF'H

+ B'D'F'H + BD'F'H' + B'DF'H'

Where, for simplicity in writing the logic functionms,

A= B =2z C D=2z

2 =z ’ b bl 7’
12 21 22 31 32

241, and H = z42.

The summing network output functioms z;> 2

2110
G

97 z3, and z4 as

shown, are not simple logic functions. Furthermore, it should be

noted that, in this specific example, there is no provision for the
polarity of the input samples, or for the output values of the response.
In order to have a general system, a sign bit must be included with the
actual information bits. This would tend to increase the complexity

of the summing network output functions. Again, it is important to
note that, in order for this type of implementation to be practical,

a different network must be devised with which to sum the outputs

of the multiplier networks.

Suppose the outputs of the multiplier networks are represented

with a sign bit and two information bits. In an effort to decrease
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the complexity of the summing network, let the network shown in
Figure 11 be used as described in the following paragraphs. -

Let the outputs of the multiplier networks be binary weighted with
the sign bit followed by the least to the most significant information
bit. These outputs are used as inputs to a bank of shift registers,
which will accept information inputs in parallél and will transfer this
information out serially. As this information is transferred out it
is "ANDED" with a pulse train from the clock. This produces a pulse
train used as the input to an up-down counter that counts the number
of pulses, thereby summing the outputs of the multiplier networks.

This type of summing network is actually an accumulator that accepts

the information from one section of the shift register band and either
counts up or down, depending upon the sign bit preceding the information
bits.

Suppose there are ten multiplier networks, with each network having
two information bits plus a sign bit. This gives each network a range
of minus three to plus three, and hence requires the up-down counter,
to be able to produce an output of minus thirty to plus thirty. The
up-down counter, however, has no provision for the sign of its output,
and it is, therefore, preset at the binary value thirty before
receiving information from the bank of shift registers, After all
the information has been transferred out of the shift registers, the
counter is again set to its null value of thirty. This allows all
states above the null value to indicate positive outputs, and those

below the null value to indicate negative outputs.
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The up-down counter can actually be viewed as a sequential
machine that accepts serial inputs and processes these inputs to
produce an output which is a function of the inputs and the previous
output. Figure 12 gives the timing diagrams for the divide-by-four
counter.8 This circuit simply allows every fourth pulse to pass, and
this pulse is ANDED with the output pulse train from the shift register
determining the sign of the information pulses to follow. An extension
of this counter is used to count every thirtieth clock pulse that sets
the up-down counter to the desired null level.

The logical gates and symbols in Figure 11 are illustrated in

the appendix.
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IV. A DIGITAL LEAD COMPENSATOR FOR AN
ERROR CORRECTING CONTROL SYSTEM

Proportional plus derivative, or "lead" compensation, is often
added to a single loop automatic control system in order to obtain a
satisfactory response. This compensation may be accomplished with
either analog or digital networks. An error correcting control loop
with digital compensation in the feedback path is shown in Figure 13,

The unit step response of an analog lead compensator is given in
Figure 14. The lead compensation is produced by summing the input and
the derivative of the input. An approximation of this response can be
obtained with a digital lead compensator,3 as shown in Figure 15. The
digital compensator consists of a monostable multivibrator, which
produces the compensation pulse, a proportional type network, and a
sﬁmming network. The compensation pulse is of width 7, the desired
time of compensation, and amplitude O, which depends upon the magnitude
of the input step.

A more accurate approximation of the analog network response can
be obtained with a digital network that produces an output similar to
the time response in Figure 14. 1In order to achieve this, theinetwork
must be of two sections: the first section produces a proportional
output in digital form; and the other section produces an output

sequence that represents the derivative compensation.

35
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The proportional section of the compensator consists of a
combinational network which multiplies the input by the appropriate
constant. The derivative section of the compensator may be implemented
with a bi-directional counter that counts in the desired sequence
upon acceptance of an input. The sequence begins at a positive maximum
and counts down, if the input is positive, and begins at a negative
maximum and counts up toward zero, if the input is negative.

The output sequence for the derivative compensation may also be
generated with a sequential machine. A special class of sequential
machines, linear sequential machines, are by definition, sequential
machines whose next state is a linear function of the present inputs
and the previous state. Linear sequential machines may be implemented
using only shift registers and modulo-two adders ("exclusive - or" elements),
thereby making the linear sequential machine an attractive approach.

It is obvious that the derivative section of the compensator is
the most difficult to implement. A block diagram view of the digital
compensator is given in Figure 16. Combinational network number one (1)
is the proportional section of the compensator, while combinational
network numbef two (2) allows the counter to count in a decay type
(non-1linear) rather than a linear sequence. However, suppose that the
proportionality constant is one, and that the derivative sequence is
linearized. This results in a reduction in the size and complexity

of the compensator as shown in Figure 17.
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There are two ways to insure that every input step will be

compensated. The first way is to have the input sampling interval

greater than the time necessary to generate the derivative count

sequence. The second way is to have the

sequence generator capable of

beginning its sequence upon acceptance of an input, regardless of its

position in the previous count sequence.
chosen for the compensator of Figure 17.
of the compensator upon acceptance of an

the count sequence.

The latter approach was
Figure 18 depicts the function

input before completion of
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V. CONCLUSIONS

The three synthesis techniques described were derived in a manner
suitable for digital implementation and can, theoretically, be used to
realize any transfer function that is realizable. However, for systems
that demand extreme accuracy, the required logical networks tend to
become very large. The most practical of the logical networks is that
used in implementing the network equation of Method III, and is shown
in Figure 6.

The most feasible method of implementation is that employing a
digital computer. These techniques can be extremely useful in time-
sharing systems employing on-line digital computers.

An approach that has not been investigated is the use of a sequential
machine to implement the derived network equations. This approach
seems very likely to produce good results, since the response at a
particular sampling instant is a function of the present input and the
output at the previous sampling instant. A special class of sequential
machines, linear sequential machines,g’10 is presently under study and is

being considered for implementation of the network equations of Methods

I, II, and III.
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APPENDIX

ILLUSTRATION OF LOGICAL GATES

AND LOGICAL SYMBOLS
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